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Land-use transitions can enhance the livelihoods of smallholder farmers but potential

economic-ecological trade-offs remain poorly understood. Here, we present an inter-

disciplinary study of the environmental, social and economic consequences of land-use

transitions in a tropical smallholder landscape on Sumatra, Indonesia. We find widespread

biodiversity-profit trade-offs resulting from land-use transitions from forest and agroforestry

systems to rubber and oil palm monocultures, for 26,894 aboveground and belowground

species and whole-ecosystem multidiversity. Despite variation between ecosystem functions,

profit gains come at the expense of ecosystem multifunctionality, indicating far-reaching

ecosystem deterioration. We identify landscape compositions that can mitigate trade-offs

under optimal land-use allocation but also show that intensive monocultures always lead to

higher profits. These findings suggest that, to reduce losses in biodiversity and ecosystem

functioning, changes in economic incentive structures through well-designed policies are

urgently needed.
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Agricultural expansion and intensification are the
main threats to tropical biodiversity and ecosystem
functioning1,2. In recent years, increasing attention has

been paid to the rise of large-scale commercial agriculture in the
tropics, and particularly, to controversial crops such as oil palm.
However, it is smallholders with farms smaller than 5 ha who
manage the largest share of agricultural land in many tropical
regions, even among so-called “estate crops” such as oil palm and
rubber3,4. Although smallholders strongly shape tropical land-
scapes, consequences of their land-use choices for socioeconomic
and ecological functions remain poorly studied5,6. Tropical
smallholder landscapes are typically characterized by a mosaic of
forest fragments, agroforestry, monocultures, and settlements,
which hold the potential to combine high yields and high
biodiversity7,8. Instead, many tropical landscapes are undergoing
widespread land-use transitions, with smallholders shifting from
traditional low-input systems to intensively managed and more-
profitable monocultures9. These transitions are likely to result in
economic–ecological trade-offs, with economic profit increasing
from intensified land-use at the expense of tropical biodiversity
and ecosystem functioning10,11. However, economic functions are
rarely directly related to ecological outcomes, although the shape
of their relationships, such as whether trade-offs are linear or
non-linear, has important management implications.

The UN Sustainable Development Goals (SDGs) aim at
managing landscapes for improved livelihoods while ensuring the
conservation and sustainable use of terrestrial ecosystems12.
Despite being fundamental toward achieving the SDGs, our
understanding of recent tropical land-use transitions as driving
forces of economic–ecological trade-offs remains limited.
Research is particularly scarce when it comes to assessing whole-
ecosystem biodiversity (multidiversity13) and ecosystem func-
tioning (multifunctionality14) across multiple tropical land uses
in different transitional stages, which is, however, a prerequisite
for successful planning of future tropical landscapes in light of
the SDGs.

Here, we explore trade-offs and synergies between multi-
diversity (26,894 species across 14 taxonomic groups), multi-
functionality (36 indicators of 10 ecosystem functions), and
profitability (annual profits per hectare after deducting production
costs from revenues) across multiple land uses with a significant
share of smallholders in Jambi Province on the island of Sumatra,
Indonesia. In contrast to previous interdisciplinary work in our
study system10,15, we explicitly model relationships between
profits and ecological functions to ascertain the shape of
profit–function relationships. We investigate economic–ecological
trade-offs for an, to the best of our knowledge, unprecedented
number of taxonomic groups and ecosystem functions, as well as
with indices of multidiversity and multifunctionality that char-
acterize the whole-ecosystem state of land-use systems. Finally, we
aim to scale-up from plot to landscape scale by identifying opti-
mized landscape compositions that mitigate trade-offs between
ecological functions and rising profit expectations from small-
holder land use.

Our study region is both a global biodiversity hotspot and a
showcase of ongoing agricultural expansion by formal (i.e.,
transmigration until the 1990s) and informal (i.e., occupation)
land-use transitions: between 1990 and 2013, rainforest land
cover in Jambi Province decreased from 49.5% to 34.5%, whereas
the land under rubber and oil palm cultivation increased from
26.4% to 32.5% (Fig. 1). Losses in rainforest cover primarily
amounted to transformation to rubber and oil palm plantations,
other agricultural land uses, and shrub, i.e., land after deforesta-
tion that is usually converted to plantations after few years of
fallow (Fig. 1; Supplementary Table 1). By 2017, 99% of the land
under rubber and ~61% of the land under oil palm in Jambi was

cultivated by smallholders16. Moreover, jungle rubber, a tradi-
tional agroforestry system of rubber-enriched disturbed or sec-
ondary forests, which was formerly the main rubber production
system in the region, has become economically marginal owing to
its low returns to land and labor (Supplementary Table 2),
resulting in its conversion to more-profitable rubber and oil palm
monocultures10. To understand the economic–ecological trade-
offs of these smallholder land-use transitions from lowland
rainforest to jungle rubber agroforestry and intensive rubber and
oil palm monocultures, we (1) conduct extensive ecological and
socioeconomic field studies, (2) including continuous records of
rubber and oil palm yields in the same study plots over a 2-year
period, and (3) derive yield–profit relationships based on the
management practices of 700 smallholder farm households in our
study region. We focus on profits as these can be expressed per
unit of land, and profits are positively associated with other
economic and human welfare dimensions in our study system,
such as household incomes, food security, and consumption
expenditures of smallholders17,18. Furthermore, to resolve spatial
landscape planning and the underlying political drivers of land-
use transformation, we conduct 150 stakeholder interviews with
government representatives, NGOs and corporate actors at dis-
trict, provincial, and national level. We find that smallholder
land-use transitions from forest and agroforestry systems to
rubber and oil palm monocultures generally result in substantial
economic–ecological trade-offs. Increases in profits of farmers
occur at the cost of massive losses in biodiversity and of key
ecosystem functions, indicating far-reaching ecosystem dete-
rioration. Although some trade-offs may be mitigated under
optimal land-use allocation, our findings question the long-term
sustainability of ongoing economic development in this global
biodiversity hotspot. Changes in economic incentive structures
through well-designed policies are urgently needed.

Results and discussion
Biodiversity-profit trade-offs. In our biodiversity assessments, we
used an extensive sample of tropical biodiversity comprising a total
of 26,894 species and operational taxonomic units, including the
most diverse and highest biomass groups and all trophic levels19.
We found strong evidence for non-linear losses in species richness
with increasing profits from smallholder land use across the
majority of taxonomic groups (Fig. 2a). Losses were generally most
pronounced at the transition from forest and jungle rubber to
monocultures, with the former two land-use systems showing the
poorest profitability but the highest species richness (Fig. 2b). By
contrast, by generating incomes of up to 1000USD ha−1 year−1,
rubber and particularly oil palm monocultures were significantly
more profitable (Fig. 2b); however, they generally harbored the
lowest levels of biodiversity. Although the total species richness of a
few groups was not related to or even increased with higher profits
(e.g., bacteria), negative richness-profitability relationships were
pervasive when analyzing the subset of species that also occurred in
rainforest (47% of all species; Fig. 2a). Hence, although more-
profitable monocultures may partially support biodiversity by
species turnover (i.e., replacement of rainforest species with habitat
generalists or exotic species), rainforest transformation to mono-
culture plantations negatively affected rainforest species across all
taxonomic groups. These findings are particularly noteworthy
because of our focus on smallholder plantations that are typically
much less intensively managed than large, commercial estates:
oil palm smallholders use on average only half the amount of
nitrogen and phosphorus that is applied in oil palm estates20.
Win–win situations of profit increases without reducing biodi-
versity—as reported from cocoa agroforestry21—are therefore not
evident when smallholders shift from traditional but less-profitable
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agroforestry to more intensively managed monocultures. More-
over, trade-offs are pervasive for both aboveground and below-
ground biota.

Ecosystem function-profit trade-offs. In addition, we studied
relationships between profit and ecosystem functioning for 36
indicators representing 10 ecosystem functions (Fig. 3). The
majority of relationships indicated undesirable trade-offs: key
functions such as soil and aboveground carbon stocks, soil
respiration as an indicator of belowground biotic activities, and
decomposition declined, whereas nutrient leaching and green-
house gas fluxes increased with higher profits from land use
(Fig. 3)22,23. Indicators of soil fertility improved with increasing
profits, but only because soil amendments (lime, borate, and
phosphorus fertilizers) were applied to the oil palm plantations in
these inherently acidic Acrisol soils (Fig. 3)23. Some relationships
between ecosystem function indicators and profit were hump-
shaped or U-shaped (i.e., plant transpiration, climatic conditions;
Fig. 3), indicating complex system-specific responses to land-use
transition24,25.

Whole-ecosystem multidiversity and multifunctionality. We
then calculated multidiversity13 and multifunctionality14 that,
respectively, comprise all taxa and ecosystem functions for each
plot, in order to test for trade-offs between increasing profits from
land-use transitions and whole-ecosystem biodiversity and func-
tioning. These indices are commonly calculated as the proportion
of plot-level measured taxonomic groups or functions of which

performance exceeds an a priori minimum defined threshold
(e.g., 70%, 50%, or 30%) of their maximum measured perfor-
mance level14. The maximum performance level is thereby not
restricted to a specific land-use system; for instance, some func-
tions may peak in rainforest plots, whereas others may peak in
monoculture plantations. Since defining a specific threshold that
determines whether a given group or function contributes to
multidiversity or multifunctionality can be arbitrary, we calcu-
lated the full range of thresholds from 1% to 99%14,26. This
approach also allowed investigating whether relationships with
profitability differed with stringency of land-use management for
multidiversity and multifunctionality: management expectations
of multifunctionality based on a 90% threshold are much more
stringent than calculations based on a 50% threshold, for exam-
ple. We found clear trade-offs between multidiversity and land-
use profitability, which were observed for the entire threshold
range (Fig. 4). Moreover, we observed a consistent loss of mul-
tifunctionality with higher profits across the full threshold range
(Fig. 4). Trade-offs for both multidiversity and multifunctionality
were strongest for thresholds approximately within the 30–70%
range (Fig. 4). Increasing profitability of land use thus always
comes at the expense of the overall ecosystem diversity and
functioning, even when land-use management aims at retaining
only medium to low levels of multidiversity or multifunctionality.

Land-use composition to mitigate trade-offs. Finally, we asked
if and under which constraints it is possible to design tropical
landscapes that maintain biodiversity and ecosystem functioning,
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and yet allow increases in profits from smallholder land use. To
this end, we used a genetic algorithm to generate conceptual
landscapes with optimized land-use composition for maximum
multidiversity/multifunctionality with increasing profit demands
from agricultural production ranging from 0 to 1000 United
States dollars (USD) average profit per ha and year. Each con-
ceptual landscape consisted of 32 empty slots (referring to the
32 study plots from the ecological field studies) to be filled by the
genetic algorithm with the plot-level data from our field surveys.
Filling was done with replacement, i.e., the algorithm could select
the same plot(s) multiple times and thereby exclude others from
selection. Hence, the total search space covered ~9.16 × 1017
possible combinations. The simulated landscapes with optimized
composition for a given profit expectation converge along the
production-possibility frontier, i.e., the Pareto-frontier for bal-
ancing economic–ecological trade-offs at the landscape scale. In
other words, the Pareto-frontier provided a set of multiple opti-
mum landscape compositions, which cannot be further optimized
(e.g., by higher biodiversity) under the given constraints (i.e., the
minimum expected profits per ha). Our simulations indicated

that maintaining high levels of multidiversity required high
proportions of lowland rainforest at the landscape scale, regard-
less of whether multidiversity was calculated based on all species
or only species also present in rainforest (Fig. 5; Supplementary
Fig. 1). With higher profit demands, trade-offs became una-
voidable, and the replacement of rainforest with plantations
resulted in parallel and linear decreases of rainforest cover and
multidiversity (Fig. 5). All medium (400–600 USD ha−1 year−1)
to highly profitable (>800 USD ha−1 year−1) landscapes were
dominated by oil palm plantations (Fig. 5; Supplementary Fig. 1),
suggesting that despite the considerable loss of multidiversity, the
trade-off would have been even stronger if profits had been pri-
marily derived from jungle rubber or rubber plantations instead.
The high importance of rainforest in maintaining landscape scale
diversity was further supported by separate optimizations for
each of the 14 taxonomic groups, with highly similar landscape
compositions across aboveground and belowground taxa (Sup-
plementary Fig. 2). Generally, a mixture of different land uses
often resulted in the highest biodiversity at the landscape scale
(Supplementary Fig. 2), emphasizing the importance of species
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turnover between land uses for biodiversity conservation27.
Analogous to the biodiversity simulations, we generated
optimized landscapes for each of the 10 ecosystem functions
and multifunctionality. We found their compositions were
highly contingent on the targeted ecosystem function and

profit expectation (Fig. 5; Supplementary Fig. 3). Landscapes
designed to maintain high levels of soil respiration or low levels
of nutrient-leaching fluxes were generally dominated by
rubber plantations. By contrast, the algorithm included oil
palm plantations in these landscapes only when profits exceeding
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800 USD ha−1 year−1 were expected, which, however, entailed
strong function losses (Supplementary Fig. 3). For other func-
tions, e.g., NPP or soil greenhouse gas fluxes, oil palm plantations
caused less trade-offs than rubber systems (Supplementary Fig. 3).
Moreover, we found that not all functions could be sustained at
similar levels. For example, given optimal land-use allocation,
high levels of soil greenhouse gas fluxes could be avoided even for
landscapes with average profits exceeding 800 USD ha−1 year−1.
Contrarily, given similar profit expectations, decomposition and
organic carbon storage retained <50% of their maximum poten-
tial (Fig. 5; Supplementary Fig. 3). The diverging responses of
functions to landscape composition resulted in low multi-
functionality even at low-profit expectations and regardless of
thresholds used in the calculations (Supplementary Fig. 1).
Moreover, multifunctionality decreased linearly from poorly to
highly profitable landscapes (Fig. 5). In summary, these results
suggest that, whereas mitigating biodiversity-profit trade-offs
under land scarcity is most efficiently achieved by retaining
rainforest habitat and deriving most profits from oil palm
monocultures, there is no one-size-fits-all solution for maintain-
ing high levels of ecosystem multifunctionality with increasing
profits from smallholder agriculture in these tropical landscapes.

Implications. We found that higher profits from agricultural
transitions in Indonesia’s tropical smallholder landscapes occur at
the cost of massive biodiversity losses and deterioration of ter-
restrial ecosystems. These findings question the long-term

sustainability of ongoing economic development in this global
biodiversity hotspot, and showcase threats from tropical land-use
transitions worldwide28. The loss of ecosystem multifunctionality
demonstrated in this study not only affects local livelihoods but
also has far-reaching effects beyond, including the loss of soil and
aboveground carbon stocks and concurrent greenhouse gas
emissions that accelerate global climate change29,30. Moreover,
although transition to more-profitable land uses can improve
living standards for the better-off, these transitions are not pos-
sible for those households that lack adequate knowledge or access
to land and resources, especially non-farm households. Con-
currently, our in-depth interviews with rural farm and non-farm
households revealed increasing social inequality and land tenure
conflicts with oil palm expansion in the region17,31.

The concrete results reported here are specific for Jambi Pro-
vince. However, although some of the details may differ by
region, the general findings on the economic–ecological trade-offs
will likely also hold for other parts of Indonesia and tropical
lowland regions worldwide. The economic impacts of the oil palm
boom for smallholders reach far beyond those assessed here in the
profit function. Indeed, adoption of oil palm production has not
only increased household incomes, but also enhanced food
security, nutrition, and consumption expenditures of adopting
smallholder farmers in Jambi Province17,18,32. At national level, it
is estimated that the oil palm boom since 2000 may have lifted up
to 2.6 million rural Indonesians out of poverty33. However, our
study shows that more-targeted landscape planning is needed to
increase land-use efficiency and ensure social and ecological
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sustainability. In particular, multifunctional landscapes in the
tropical lowlands require context-specific solutions that overcome
profit-functioning trade-offs that remain unavoidable without
changing the economic incentives for smallholders. A combina-
tion of well-designed regulatory command and control measures
with incentive-based measures such as payment for environ-
mental services (PES) schemes is one promising option34.
Premium prices for outputs produced with ecologically friendly
practices, such as rubber or palm oil from certified landscapes
that include production and non-production land, are an
alternative35. Any approach will require law enforcement and
the consideration of trade-offs between multifunctionality and
profit in spatial planning to halt unsustainable land-use change
and biodiversity loss in tropical lowlands.

Methods
Study region and study design. Field research for this study was carried out in the
tropical lowlands of Jambi Province on the island of Sumatra, Indonesia. This region
has experienced massive land-use change and transition over the course of the 20th
century and is a showcase of smallholder agriculture in Indonesia10. For much of
the last century, the region was characterized by shifting cultivation and subsistence
farming, but with the introduction of transmigration villages in the 1980s under the
Suharto regime, the underlying political development strategy focused on market-
oriented modern crops and smallholder expansion supported by transmigration36.
Contract farmers for palm oil production made up the vast majority of transmi-
grants that were moved from the densely-populated island of Java to Jambi Pro-
vince36. The rise of plantation agriculture resulted in transformation and loss of
primary rainforest, which still continued in the 21st century10. In 2011, the Indo-
nesian government presented its ambitious master plan to accelerate nation-wide
economic development until 2025, which also includes the Sumatra Economic
Corridor, a large-scale infrastructure and development project to further transform
the island into Indonesia’s mainstay of plantation agriculture37. Within Jambi
Province, we selected two landscapes, “Harapan” and “Bukit Duabelas” (with loam
and Acrisol soils, respectively) with four land-use systems common to the region:

primary degraded lowland rainforest38, jungle rubber (a traditional agroforestry
system), monoculture rubber plantation and monoculture oil palm plantation. At
the time of site selection in 2012, the monoculture rubber plantation varied between
7 and 16 years in age and the oil palm plantations between 8 and 15 years. In each
landscape, we established four 50m × 50m replicate plots in each of the four land-
use systems, resulting in 32 study plots. This number of replicates is typical for
ecological studies in tropical lowland forests39. Forest plots were located in the Bukit
Duabelas National Park and the Harapan Rainforest Restoration concession (PT
REKI). All other plots were owned and managed by smallholders. Within each plot,
five permanent 5 m × 5 m subplots were established. More information on the study
region, study design, land-use systems, and management practices of the small-
holder systems are published elsewhere10,15.

Quantification and mapping of land use and land cover changes from 1990 to
2013 in Jambi Province. Figures for land cover and land-use change were derived
from a spatio-temporal model based on official geodata available for the years 1990
and 2013. The land-use classifications were produced by the Indonesian Ministry
of Environment and Forestry following a standard methodology based on Landsat
and SPOT imagery40. Although the official land cover map distinguishes 23 land
cover classes (seven forest classes, 15 non-forest classes, one class of clouds/no
data), they were aggregated and refined into the five main classes relevant for this
study41: forest (including primary and secondary rainforest as well as forest
plantations), oil palm, rubber (containing rubber plantations and jungle rubber),
other agricultural systems and shrub/bush land. A change matrix of aggregated
land-use classes between the years 1990 and 2013 was computed by intersecting all
single polygons and deriving the related area that had changed from one class to
another. An independent validation of the existing maps was only possible based
on collected field data for the map product from 2013. The accuracy assessment
showed an overall accuracy of classification of 82.6% and Kappa coefficient of 0.79.
In general, each land use had >70% accuracy with a relative balance between
producer and user accuracy. In absence of an independent validation for the map
from 1990, we here need to assume a comparable accuracy. Accuracies for the
respective map products reported in ref. 40 are higher (88% for all 23 classes), but
refer to whole Indonesia and not to Jambi Province alone.

Yield assessment. From beginning of July 2014 to end of June 2016, especially
trained field assistants and plot managers continuously monitored the harvested
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Fig. 5 Optimized landscapes for highest-possible levels of biodiversity or ecosystem functioning with increasing profits from agricultural production.
Optimized landscape compositions are shown for examples of taxonomic groups and ecosystem functions as well as for multidiversity and
multifunctionality considering all studied groups and functions, respectively. Each bar represents a landscape solution as identified by a genetic algorithm,
fed with plot-level information on biodiversity or ecosystem functions and profits of smallholder farmers. Colors indicate the composition of landscape
solutions, i.e., the proportional share of the four studied land-use systems. Red dots indicate the realized biodiversity or ecosystem function for a given
landscape composition, connected by lines to visualize trends with increasing profit expectations. Realized values are scaled between 0 and 1, whereby 1
corresponds to 100% of biodiversity (all sampled species present) or ecosystem functioning (all function indicators at their maximum) at the landscape
level. A priori defined profit expectations: 0; 200; 400; 600; 800; 1000 USD ha−1 year−1. Source data are provided as a Source Data file.
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biomass (tapped and dried rubber, fresh oil palm bunches) from the selected 50 ×
50 m jungle rubber, monoculture rubber, and monoculture oil palm plots. Fol-
lowing their normal schedule, plantation keepers tapped rubber trees continuously
and collected rubber ranging from every week to twice per month. Oil palm
bunches were harvested on average twice per month. Yields were standardized to
rubber and fresh fruit bunch weight in kg ha−1 and averaged across years.

Trees and understorey vegetation. Within each plot, we identified all trees with a
diameter at breast height ≥ 10 cm to species level. Moreover, all vascular plant
individuals growing within the five 5 m × 5 m subplots were identified, including
terrestrial plants (herbs, shrubs, and young trees), climbers, and epiphytes up to
3 m height42. Herbarium specimens of three individuals per species were prepared
for identification and later deposition at several Indonesian herbaria (Herbarium
Bogoriense, BIOTROP Herbarium, Herbarium of the University of Jambi, Harapan
Rainforest Herbarium).

Canopy ants and parasitoid wasps. Canopy ants (Formicidae) and canopy
parasitoid wasps (Braconidae, Ceraphronidae, Encyrtidae, Eulophidae, Platygas-
tridae, Scelionidae) were collected by canopy fogging. Per fogging event, we used
50 ml DECIS 25 (Bayer Crop Science, active ingredient: Deltamethrine 25 g/L)
dissolved in 4 L of petroleum white oil, applied to target canopies by the Swingtec
SwingFog SN50. All 32 study plots were sampled twice, first in the dry season 2013
and the second time in the rainy season 2013/2014. Standardization was achieved
by placing 16 funnel traps (1 m² each) underneath each target canopy in three
subplot replicates per plot15. In total, we sampled 130,527 individuals of canopy
ants, sorted to 227 (morpho-)species from nine subfamilies (dry season 2013 and
rainy season 2013/2014) and 10,070 individuals of parasitoid wasps, sorted to 1,182
morphospecies (dry season 2013).

Birds and bats. Birds were sampled with point counts as well as automated sound
recordings from May to July 2013. All plots were visited three times for 20 min
point counts. The observer was in the plot middle, and all birds detected within the
plot were recorded. Point counts took place between 6:00 and 10:00 and the timing
for individual plots alternated between early and late morning. We excluded
detections from fly-overs, and bird vocalizations that could not be identified
immediately were recorded using a directional microphone (Sennheiser ME-66) to
compare with recordings from the Xeno-Canto online bird call database (http://
xeno-canto.org/). In addition to point counts, we recorded stereo sound at 44,100
Hz sampling frequency (SMX-II microphones, SM2+ recorder, Wildlife acoustics);
the recorders were attached to the central tree of the plot at 2.0–2.5 m height. We
could record sound in eight plots simultaneously; sampling all 32 plots took four
days (10th and 13th of May, and the 3rd and 7th of June 2013). We uploaded the
first 20 min after sunrise to a website (http://soundefforts.uni-goettingen.de/) so
that two independent ornithologists could identify all audible and visible bird calls
(within an estimated 35 m radius) to species. For each plot, only bird species
identified by both ornithologists were subsequently merged with the species
obtained from the point counts to generate the data set used in the analysis.

Bats were caught using mist nets and harp traps between April and August
2015. We used telescopic aluminum poles to install mist nets with a total of 48 m in
length as well as two harp traps (1.35 m × 1.75 m) in presumed bat flyways. Mist
nets were 3 m high, with 19 mm in mesh size, and installed at ground level or up to
3 m high, depending on plot conditions. Each plot was sampled from 17:30 to 22:00
on two consecutive nights for an average sampling effort of 1296 m2 of mist net
hours. We checked the nets and traps every 15 min until 20:00 and every 30 min
thereafter. Harp traps were left on site and checked the morning after. Each
individual bat’s morphology was measured to identify them according to the latest
bat species checklist for Sumatra43. We tagged the bats’ nails with nail polish color
codes to identify recaptures and released them after closing mist nets.

Butterflies. We obtained abundance data for butterflies (Lepidoptera: Papilioni-
dae, Pieridae, Lycaneidae, Nymphalidae) from all 32 study plots between August
and October 2017. Butterflies were collected using sweep netting (exception:
Troides amphrysus CRAMER 1779, identified on sight) on three parallel transects
per plot, with two transects located on the outer borders of the plots, and the third
transect located through the center. Sweep netting was conducted twice per day per
plot, in the morning (8:00–11:00 am) and afternoon hours (13:00–16:00 pm). All
butterfly individuals were released after identification in the evenings of the sam-
pling day, with the exception of up to two dried/mounted individuals and five
individuals in 99% EtOH p.A. per species, which were kept for species ID and
further analysis. Our data are based on 6653 caught and/or observed butterfly
individuals that we identified to 209 species, using standard taxonomic literature.

Litter invertebrates. We sampled litter macroinvertebrates in three subplots of
each of the 32 study plots between October and November 201244,45. In each
subplot, we sieved 1 m² of leaf litter from the ground through a 2 cm width mesh
and hand-collected all invertebrates visible to the naked eye from the containers
below the sieves. Animals were stored in 65% ethanol for further identification in
the laboratory. All animal individuals were then identified to family and subse-
quently, given a lack of suitable identification keys for the study area, to

morphospecies based on consistent morphological characteristics. Juvenile spiders
were excluded from the data set, as they could not be reliably identified to mor-
phospecies. Finally, observed litter invertebrate species richness was calculated as
the number of morphospecies present in the total 3 m² sampled at each study plot.

Testate amoebae. To sample testate amoebae (protists) at each study plot, we
took litter and upper mineral soil samples (to a depth of 50 mm) in October and
November 2013, using a corer of 50 mm in diameter46. We then extracted testate
amoebae from the samples by washing 1 g dry weight litter sample over a filter of
500 μm mesh and back-sieving the filtrate through 10 μm mesh. Microscopic slides
were prepared from the final filtrate and testate amoebae were identified to
morphospecies46

Oribatida and mesostigmata. To collect soil microarthropods (Oribatida and
Mesostigmata) three soil cores were taken during October to November 2013 from
each study plot. Soil cores measured 16 cm × 16 cm and comprised the litter layer
and the underlying mineral soil layer to a depth of 5 cm. Animals were extracted by
heat47, collected in dimethyleneglycol-water solution (1:1) and thereafter trans-
ferred into 70% ethanol. More details on the sampling and extraction procedure are
given in ref. 48. Oribatida were identified to (morpho)species from two out of three
cores in each plot, Mesostigmata were identified to (morpho)species from one out
of three cores in each plot.

Fungi. In each plot, we collected soil samples in three subplots resulting in
96 samples. After sieving, freeze-drying and storage at −20 °C under liquid
nitrogen49, DNA was isolated with the PowerSoil DNA Isolation Kit (MO BIO
Laboratories Inc.), reverse transcribed, amplified with the ITS1-F-KYO1 and ITS-4
primers and linked with 454 pyrosequencing adaptors (Roche, Mannheim, Ger-
many). Purified products were submitted to the Göttingen Genomics Laboratory
(G2L, Göttingen, Germany) for sequencing and bioinformatics analyses including
sequence assembly and quality filtering50. For taxonomic assignment, high-quality
sequences were blasted against the UNITE database (v7, sh_refs_qiim-
e_ver7_99_s_01.08.2015.fasta); unclassified OTUs and extrinsic domain OTUs
(Protista, Plantae) were removed50. Sequences were deposited in the National
Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA)
under accession number SRP134264. A rarefied OTU table (1229 sequences per
sample) was used for the current analyses.

Bacteria and archaea. To assess bacterial and archaeal community compositions
bulk soil DNA of three subplots per study plot was extracted with PowerSoil DNA
isolation kit (Dianova, Hamburg, Germany) and used for amplification of 16 S
rRNA genes targeting the V3–V5 region using the Phusion hot start high-fidelity
DNA Polymerase (Finnzymes)51. The thermal cycling scheme was as follows: initial
denaturation at 98 °C for 5 min, 25 cycles of denaturation at 98 °C for 45 s,
annealing for 45 s at 65 °C for bacteria and 60 °C for archaea, and extension at
72 °C for 30 s, followed by a final extension period at 72 °C for 5 min. Sequencing
was performed at the Göttingen Genomics Laboratory with a 454 GS-FLX
sequencer and Titanium chemistry (Roche, Mannheim, Germany). Amplicon
sequences were quality-filtered, denoised, clustered at 97% sequence, identity,
chimera checked, and taxonomy was assigned using the SILVA database version
11952 employing QIIME 1.8 scripts53. Singletons, chloroplasts, unclassified OTUs
and extrinsic domain OTUs were removed by employing filter_otu_table.py.
Rarefied OTU tables (bacteria 6800 and archaea 2000 sequences per sample) were
used for the analyses.

Net primary production. The following components of net primary production
(NPP) were measured from March 2013 to April 2014 on all 32 study plots:
aboveground litterfall including pruned oil palm fronds, fine root production,
rubber latex harvest, and oil palm fruit harvest, as well as stem increment. Litterfall
from 16 litter traps on each plot was collected at monthly intervals and separated
into leaves, woody material, propagules, and inflorescences, which were subse-
quently oven-dried for 72 h at 60 °C and weighted. In oil palm plantations all
pruned palm fronds were counted and total dry weight extrapolated based on a
dried subsample of fronds. To calculate woody biomass production based on the
respective allometric equations22 differences in tree aboveground biomass between
census points were used. Manual dendrometer tapes (UMS, Munich, Germany)
were mounted on 40 tree individuals per plot (960 in total) to obtain stem incre-
ment data. Oil palm biomass production was obtained from height increment data
measured every 3 months. To estimate fine root production 16 ingrowth cores per
plot were installed. After removal of the cores, root samples were processed in the
same way as the root inventory samples.

Organic carbon in plant biomass. Stand structural parameters (height, diameter)
were recorded for each tree with a diameter at breast height ≥ 10 cm on all 32 study
plots using a Vertex III height meter (Haglöf, Långsele, Sweden). Wood density
values were obtained from wood cores extracted from 204 trees. For the remaining
trees, interpolated values derived from measurements of wood hardness with a
Pilodyn 6 J (PROCEQ SA, Zürich, Switzerland) were applied. Allometric equations
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were used to estimate aboveground woody biomass and coarse roots biomass for
forest trees, rubber trees, and oil palms22. Fine roots biomass (diameter: ≤2 mm)
was measured using 10 soil cores down to 50 cm soil depth at each plot. All fine
roots segments > 1 cm length were extracted by washing on a sieve and separated
under a stereomicroscope into live (biomass) and dead (necromass) fractions,
pooled for the current analysis. The C content of each component (stem wood, fine
roots, dead wood, rubber latex, oil palm fruit, all litter fractions) was analyzed with
a CN auto-analyzer (Vario EL III, Hanau, Germany) and used to convert biomass
into carbon units22.

Soil organic carbon and soil fertility indicators. In 2013, soil samples were
collected at three depth intervals (0.0–0.1 m, 0.1–0.3 m, 0.3–0.5 m) in each of
the five randomly selected subplots per plot, and further three depth intervals
(0.5–1.0 m, 1.0–1.5 m, and 1.5–2.0 m) at two of the five subplots. The mean of the
five or two subplots represented the value for each replicate plot. Soil organic
carbon for the 0.0–0.5 m and 0.5–2.0 m depths were cumulative stocks of the three
depth intervals. For the soil fertility indicators (net N mineralization rate, extrac-
table P, and exchangeable Ca, K, Mg, and Na), we used the measurements in the
top 0.10 m depth. Soil organic C concentrations were analyzed from air-dried,
ground soils using a CN analyzer (Vario EL Cube, Elementar Analysis Systems
GmbH, Hanau, Germany). Net N mineralization was measured using an in situ
buried bag method of intact soil cores. Extractable P was determined from air-
dried, 2 mm sieved soils using the Bray 2 method. Exchangeable cations were
determined by percolating air-dried, 2 mm sieved soils with unbuffered 1 M NH4Cl
and cations were measured in percolates using an inductively coupled plasma-
atomic emission spectrometer (ICP-AES; iCAP 6300 Duo VIEW ICP Spectro-
meter, Thermo Fischer Scientific GmbH, Dreieich, Germany).

Soil respiration and soil greenhouse gas fluxes. Soil CO2, CH4, and N2O fluxes
were measured monthly for 1 year (2013) using vented, static chambers with
permanently installed bases in four subplots per plot20,54. The mean of the four
subplots represented the value for each replicate plot on each sampling period.
During gas sampling, the chamber bases were closed and four gas samples (23 mL
each) were taken at 1 min, 11 min, 21 min, and 31 min after chamber closure. Gas
samples were immediately injected into pre-evacuated 12 mL Labco Exetainers and
were analyzed using a gas chromatograph with electron capture and flame ioni-
zation detector (GC 6000 Vega Series 2, Carlo Erba Instruments, Milan, Italy). Soil
gas fluxes were calculated from the linear increase of concentration over time of
chamber closure and adjusted for the measured air temperature and pressure at the
time of sampling.

Nutrient-leaching fluxes. Nutrient leaching was measured biweekly to monthly
for 1 year (2013) using suction cup lysimeters (P80 ceramic, maximum pore size
1 μm; CeramTec AG, Marktredwitz, Germany), which were installed in two sub-
plots per plot. These lysimeters were inserted into the soil down to 1.5 m depth. Soil
water was withdrawn by applying a 40 kPa vacuum on the sampling tube. The
collected soil water samples were stored in 100 mL plastic bottles and immediately
frozen upon arrival at the field laboratory. Frozen water samples were transported
to Germany and were kept frozen until analysis. The total dissolved N (TDN),
NH4

+, and NO3
− were measured using continuous flow injection colorimetry

(SEAL Analytical AA3, SEAL Analytical GmbH, Norderstedt, Germany), whereas
dissolved organic C was determined using a total organic carbon analyzer (TOC-
Vwp, Shimadzu Europa GmbH, Duisburg, Germany). Dissolved Na, Ca, Mg, total
Al, total P, and total S were analyzed using ICP-AES. Drainage water fluxes were
estimated using a soil water model, parameterized with our measured site char-
acteristics (climate data, leaf area index, rooting depth, soil water retention curve,
texture, and bulk density)23. Element concentrations from each of the two lysi-
meters per replicate plot were multiplied with the total biweekly or monthly
drainage water flux to get the nutrient-leaching fluxes. The annual leaching flux
was calculated as the sum of biweekly to monthly measured leaching fluxes, and the
average of the two lysimeters per plot represents the value of each replicate plot.

Decomposition. Litterbags with 10 g dry leaf litter mixture of three tree species
were placed in each of the four land-use systems with one litterbag in each of the
32 study plots in October 2013 and retrieved in March 201455. Litter mass loss was
calculated as the difference between the initial dry mass and litter dry mass
remaining after 6 months.

Plant transpiration. Plant transpiration was assessed at all 32 study sites by sap
flux measurements with Granier-type thermal dissipation probes. The measure-
ments were performed between March 2013 and March 2014 and lasted at least
3 weeks per site (52 days on average). Sap flux sampling and scaling schemes to
stand transpiration (mm d−1) differed for the four land-use types and were spe-
cifically adapted for forest and jungle rubber, rubber plantations and oil palm
plantations56,57. The scaling scheme for forest, jungle rubber, and rubber included
the application of radial sap flux profile functions with increasing stem xylem depth
as derived from measurements with heat-field deformation sensors. Annual series
of reference potential evapotranspiration calculated from micrometeorological
measurements in the study region with the Priestly–Taylor equation were

subsequently used to extrapolate the transpiration series from each study site to the
annual scale via a linear regression approach57,58.

Climatic conditions. Microclimatic conditions were assessed with below canopy
meteorological stations in each of the plots. They consisted of a thermohygrometer
(Galltec Mella, Bondorf, Germany) placed at a height of 2 m above the ground to
measure air temperature and air relative humidity and a soil sensor (IMKO Trime-
PICO, Ettlingen, Germany) at a depth of 0.3 m to monitor soil temperature and soil
volumetric moisture. Data were recorded hourly with a data logger (LogTrans16-
GPRS, UIT, Dresden, Germany). Data covered the period June 2013 to
October 2014.

Farm household surveys (2012 and 2015). For the estimation of economic
returns from land (profit), we analyzed data from a farm household survey con-
ducted in five regencies in the lowlands of Jambi Province of Indonesia. The survey
was carried out in two rounds; the first round in 2012 and the second in 201518.
For household selection, we used a multistage random sampling procedure. Five
regencies (Sarolangun, Bungo, Tebo, Batanghari, and Muaro Jambi), which com-
prise most of the lowland transformation systems in Jambi, were selected purpo-
sively. From each of these regencies, we randomly selected four districts per
regency and two rural villages per district, resulting in 40 randomly selected vil-
lages. In addition, five villages near to the Bukit Duabelas National Park and the
Harapan Rainforest, where the ecological research was carried out, were purpo-
sively selected. Finally, we randomly selected farm households in the villages, based
on household census data. In each village, we selected between 12 to 24 households,
with the number adjusted to the total number of households residing in a village. In
total, 701 households were interviewed in each round. For the 2015 round, we
targeted the same households. Attrition rate was only at 6%. More than 50% of the
sample households were from the regencies where ecological studies were con-
ducted (Sarolangun and Batanghari). A structured questionnaire was administered
to household heads through face-to-face interviews. Interviews were conducted by
local enumerators who were trained and supervised by the researchers. Data on
historical land-use changes and land transactions were collected alongside current
management practices (e.g., inputs, output, market price, etc.). For profitability
analysis, input-out data at the plot-level from the second round of household
survey in 2015 were employed. We calculated annual profits per hectare by
deducting production costs from plot revenues. Plot revenues were calculated by
multiplying agricultural output with the average output prices per year received by
farmers. Production costs were calculated by valuing all production factors and
inputs by their usual market prices. While for wage labor and material inputs
individual price data were collected, family labor was valued using the average
agricultural wages in the regencies in 2015. Wage levels were derived from the
Indonesian Labor Survey (SAKERNAS). We calculated profits for jungle rubber,
rubber and oil palm plots. For forest we set profits to zero, since only ~1% of the
households marketed forest products in 2015. Annual profits for 2012 and 2015
(adjusted for inflation) are reported in Supplementary Table 2, illustrating the
strong decrease in rubber prices from 2012 to 2015. We converted all profits from
Indonesian rupiahs (IDR) to US dollars (USD), using the average exchange rate of
the two currencies in 2015 (1.00 USD= 13389.413 IDR)59.

Qualitative interviews at household, sub-national, and national level. To
investigate the history of landscape transformation, spatial planning and the
underlying political drivers of transformation we conducted semi-structured and
open qualitative stakeholder interviews, focus group discussions and participatory
rural appraisals at multiple levels. Research was inspired by multi-sited ethno-
graphy60. We followed the networks of different actors impacted by land-use
transformation and land tenure conflicts and those driving transformation in
Jambi. Interviews were conducted at the village and household scale including
indigenous leaders and village governments in order to understand village and
land-use history, impacts of state policies, individual land-use decisions, environ-
mental change, and land tenure conflicts. At the sub-national and national level, we
conducted interviews with state agencies, ministries, environmental NGOs and
peasant and indigenous rights organizations. Qualitative research took place
between 2012 and 2016. In total, we conducted 150 qualitative interviews.

Estimation of profits from crop yields on the study plots and statistical
analysis of biodiversity-profit and ecosystem function–profit relationships.
Linking biodiversity or ecosystem functions to the crop income required detailed
information on farmers’ profits at the plot level. However, because output prices
and input prices vary significantly both spatially and temporarily, restricting our
analysis to the profits of the 24 plots on which the ecological studies were con-
ducted (including yield measurements of rubber and oil palm) would likely gen-
erate biased estimates. Instead, we followed a two-step procedure to estimate profits
at level of the ecological study plots. First, we established the relationships between
crop yields and profits for the three land-use systems jungle rubber, rubber, and oil
palm as based on the household surveys. Second, we predicted the profits from
yields on the ecological study plots from these relationships, including the varia-
bility in the relationships between yields and profits established in the first step. In
the following, we describe our approach in more detail. Using the included
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information on yields (annual harvest amounts) and profits per ha of smallholder
farmers, we modeled yield–profit relationships with simple linear regression. We
found evidence of strong, positive, and linear relationships between the yields and
farmer’s profits for all the three crops (Supplementary Fig. 4). Likewise, increasing
variances in profits for increasing yields were consistently observed irrespective of
the crop. Second, we used the model coefficients of these relationships to predict
the profits of the 24 jungle rubber, rubber, or oil palm plots based on the yields at
plot level (see section “Yield assessment”). We did not restrict ourselves to pre-
dictions of their average profits but also included estimations of the heteroscedastic
residual variances in the yield–profit relationship of each crop (i.e., non-constant
variances of the deviations of observed data points from model predictions; Sup-
plementary Fig. 4). Note, however, that neither the predicted average profits nor
the average profits plus a randomly drawn error term correspond to the true,
unobserved profits. Hence, profits can be seen as a variable exhibiting measurement
error. It is known that measurement error in explanatory variables leads to
downward biased regression coefficient and predictions.

To this end, we applied the simulation and extrapolation (SIMEX) method61.
The idea of the SIMEX method is to exploit the relationship between different
degrees of measurement error variances and the bias of the estimators of interest.
Let σ2e be the measurement error variance in the explanatory variable and β a single
parameter of interest associated with this variable. Let further G σ2e

! "
be a function

describing the relationship between the potentially biased estimator of β for
infinitely large sample size and σ2e : For different values of λ; λ ≥ 0; additional
measurement error with variance λσ2e is added to the explanatory variable with
measurement error, resulting in a measurement error variance of 1þ λð Þσ2e . Given
a certain value for λ, the measurement error is simulated B times and the parameter
of interest is estimated in each of the B steps while not accounting for the
measurement error. Averaging over the B estimates yields convergence to G.
Applying this bootstrap procedure for different values of λ, the relationship
between the degree of measurement error and the resulting estimator G of
interest can be estimated, e.g., in a linear or quadratic fashion using ordinary least
squares. Eventually, the predicted value of this function for no measurement error,
i.e., λ=−1, is calculated, which is the SIMEX estimator βSIMEX=G(0).

In our application, the heteroscedastic measurement error variances for the
three crops were estimated from the yield–profit relationships as described above.
We used a grid of 10 equidistant values for λ between 0.1 and 3, B= 200 bootstrap
replication for each λ and a quadratic fit to model the relationship between
different degrees of measurement error variances and the bias of the estimators of
interest. We were interested in the coefficients from the links between profit and
biodiversity or ecosystem functions, which were modeled in a non-linear fashion
via penalized splines within the generalized additive models framework. The
negative binomial distribution was chosen to account for the count data nature
with potential overdispersion in the case of models with species richness as
response. We used the R package simex (ver. 1.7)62 that includes the
implementation of the SIMEX method for generalized additive models with
heteroscedastic measurement error in the explanatory variable. In summary, this
approach allowed us to capture the measurement error in the profits and to
unbiasedly estimate the relationships between profit and the different biodiversity
or ecosystem functions.

We modeled the relationships between biodiversity and profit for each studied
taxonomic group, using two measures of species richness as response, respectively:
(1) richness based on all species recorded in a study plot and (2) richness based
only on those species that also were recorded in forest plots. The relationships
between ecosystem functions and profit were separately modeled for each indicator
variable per function.

Calculation of multidiversity and multifunctionality and their relationships to
profits. We calculated indices of multidiversity and multifunctionality in order to
test if the observed trade-offs between economic and ecological indicators at the
level of individual taxonomic groups and ecosystem functions are also evident
when considering all groups or functions simultaneously (see Supplementary
Table 3 for an example calculation). Multidiversity was calculated based on species
richness of all 14 studied taxonomic groups; likewise, we calculated multi-
functionality based on all 36 indicators of the 10 studied ecosystem functions.
These indices are commonly calculated as the proportion of plot-level measured
functions or taxonomic groups of which performance exceeds an a priori minimum
defined threshold (e.g., high, medium, or low performance) as compared with the
maximum measured performance level14. The maximum performance level is
thereby not restricted to a specific land-use system, i.e., although some functions
may peak in forest plots, others may peak in monoculture plantations. Since
defining a specific threshold that determines whether a given ecosystem function or
taxonomic group contributes to multifunctionality or multidiversity can be arbi-
trary, we calculated the full range of thresholds from 1% to 99%14,26. This approach
also allowed us to investigate whether relationships with profitability differed
depending on expectation levels of minimum ecosystem functioning or biodiversity
performance, which is particularly relevant for defining goals of landscape man-
agement; for example, management expectations of multifunctionality based on a
90% threshold are much more stringent than multifunctionality based on a 50%
threshold. First, we defined the 100%-level of biodiversity (species richness per
taxonomic group) or ecosystem functioning for each group or function as the mean

of the five highest recorded values to reduce potential influence of outliers63.
Second, a threshold was defined at which levels of species richness or ecosystem
function performance were considered sufficiently high to contribute to local
multidiversity or multifunctionality, respectively. For example, when considering a
threshold of 50%, only those species groups that are at least at 50% of their average
maximum observed species richness (across all plots) will contribute to local
multidiversity. Multidiversity and multifunctionality were then defined as the
proportion of species groups or functions that locally exceeded the threshold as
compared with the total number of species groups or functions that were studied in
a given study plot (see Supplementary Table 3 for an example calculation of
multifunctionality based on three functions). Because for most ecosystem functions
multiple indicators were measured, we weighted these indicators according to their
proportional share on the function (e.g., for an ecosystem function measured with
eight indicators, each indicator variable was weighted 12.5%). Furthermore, we
used the inverse of the indicators for which high values indicated less desirable
functioning (e.g., nutrient leaching and soil greenhouse gas fluxes; see Fig. 3), so
that in all cases, high values indicated high levels of ecosystem functions con-
tributing to multifunctionality. We calculated multidiversity and multifunctionality
for all study plots and across the full range of thresholds from 1% to 99% at steps of
0.01%. We then related the index values to the average predicted profits of crop
yields at plot-level with simple linear regression.

Landscape composition optimization using a genetic algorithm. To identify
how landscape design may be optimized to mitigate the observed
socioeconomic–ecological trade-offs at landscape scales, we designed conceptual in
silico landscapes of different composition, using the four studied land-use systems
(forest, jungle rubber, rubber monoculture, oil palm monoculture) as input. These
“optimized landscapes” were informed by the plot-level data from the ecological
surveys and associated profit estimates. A virtual landscape consisted of 32 empty
50 m × 50 m slots, corresponding to the number of empirical study plots and their
spatial extent in our ecological surveys. For four taxonomic groups, data were only
available for a reduced number of study plots (archaea and fungi: 30 plots; testate
amoebae and birds: 31 plots); for these cases, the landscape size was adjusted
accordingly. We then “filled” the empty slots to identify the landscape composition
that resulted in the highest-possible level of multidiversity, multifunctionality,
species richness (total richness across all included plots), or ecosystem functioning
(sum of standardized and equally-weighted indicator values of an ecosystem
function) at the scale of the conceptual landscape. Filling was done using the plot-
level data with replacement, i.e., the solution space for the composition of the
virtual landscape encompassed all possible combinations from landscapes that were
made up by repeated fills with only one study plot to landscapes consisting of
combinations of all 32 plots. To incorporate potential socioeconomic–ecological
trade-offs into this optimization process, we constraint the landscape solutions by a
priori defined minimum profit expectations. In line with the expectation that
farmers and landscape managers aim at increasing profits from land-use, we
optimized the landscapes for six profit expectations, whereby the expected profit
was the average profit of the included plots: 0, 200, 400, 600, 800, 1000 USD ha−1

year−1. These expectations corresponded to the average observed profits estimated
from our yield assessments (Supplementary Fig. 4). By constraining the optimi-
zation process to these expectations, a landscape solution was allowed to surpass a
given expectation, but solutions that did not provide the expected profit (e.g.,
because a conceptual landscape consisted predominantly of forest plots) were
discarded.

Because the number of solutions of a landscape with 32 plots that are filled with
replacement is very large (~9.16 × 1017), a brute force approach whereby all
possibly solutions are calculated to identify the best solution (i.e., the landscape
composition that most efficiently minimizes the trade-off, or the Pareto-frontier)
was not computationally feasible. Instead, we used a binary genetic algorithm (GA)
for the optimization process. Genetic algorithms mimic evolutionary processes to
solve otherwise numerically or computationally non-solvable discrete and
continuous optimization problems64. They have been suggested as heuristic
optimization techniques to support landscape design for optimal profit-natural
value relationships65,66. As in natural evolution, GAs code information within
genes (located on chromosomes), individuals (bearing chromosomes) and
populations of individuals. Exploration and exploitation facilitate the evolutionary
process of the GA64. Exploration of the parameter space is achieved by mutation of
genes and cross-over of genetic information between chromosomes of individuals
of a founder population. Exploitation mimics the “survival of the fittest” observed
in natural populations, and reduces the diversity in the population by selecting the
fittest individuals for the next generation while discarding poor performers to make
room for new offspring. The resulting optimization process makes GAs powerful
tools to solve large and complex computational problems. In our binary GA, the
decision whether to include or not to include a study plot was coded as a gene with
1= inclusion and 0= no inclusion. Because each landscape consisted of 32 study
plots (or 30–31, see above) and our approach allowed for filling with replacement,
each gene needed to be replicated 32 times. The resulting 1024 genes were arranged
on one chromosome. Each chromosome represented a landscape solution with
defined landscape composition (coded by the 0 s and 1 s that inform whether a plot
is included or not) and consequently defined profit, biodiversity and ecosystem
functioning.
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We used the above-described GA to identify optimized landscape compositions
for each target variable, i.e., species richness of taxonomic groups, performance of
ecosystem functions as weighted averages of function indicators, multidiversity,
and multifunctionality. In each GA optimization, the population size was 500
chromosomes and the optimization process continued for 100 generations before
selecting the best landscape solution.

We used the package “genalg” version 0.2.067 to implement the GAs in the R
statistical environment68.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from github, https://github.
com/ingograss/sumatra_landuse_tradeoffs. The source data underlying Figs. 2–5 are
provided as a Source Data file.
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